RAPID data model By Cédric H. David (<u>cedric.david@jpl.nasa.gov</u>), 06 Jul 2010, updated 21 Jan 2015 #### Goal **Given** the following information on a river network domain: - Network connectivity - Inflow to river network from land and aquifers (provided by a land surface model for example) - Estimate of model parameters (can be crude estimate) - Stream flow observations at many stations - Forcing data, i.e. flow data that is to be used as upstream flow instead of upstream flow computed by RAPID (forcing can be from observations) **Given** a list of IDs of rivers constituting a basin that is fully contained in the domain (can be the domain itself) #### **RAPID** can: - Compute Q and V for the basin - Optimize Muskingum k and x for basin based on observed flows #### **Underlying assumptions** Stream flow observations are from gage measurements. A subset of all gages available in the domain can be used in the optimization procedure. Forcing data is a term used loosely here to indicate that known flow coming for upstream is used at given locations. #### **Input files in RAPID** RAPID has both input and output (I/O) files. In Fortran, I/O files have to have a unit number. For clarity of the code, RAPID uses the same unit numbers throughout all subroutines. 10 rapid connect file 11 riv_bas_id_file obs_tot_id_file 12 13 obs_use_id_file 16 for_tot_id_file 17 for_use_id_file 20 k file 21 x_file 22 kfac_file 23 xfac_file 30 Qinit_file Qfinal_file 31 Vlat_file XX 33 Qobs_file 34 Qfor_file 35 Qobsbarrec_file Qout_file XX ### **Sorting within RAPID files** The ordering of reach IDs in the corresponding values of variables in all following files has to be consistent with rapid_connect_file: kfac, Qinit, k, x, Vlat. This is because the variable IV_riv_index is used when reading all these files and IV_riv_index is calculated based on riv_bas_id_file and rapid_connect_file. However, the order of riv_bas_id_file doesn't matter for reading the inputs. It only matters for the calculations within RAPID and hence for performance of the linear system solvers. # **Reading lateral inflow** # Vlat_file Read → ZV_read_riv_tot IS_riv_tot is known directly from the size of domain, it is also the number of lines in rapid_connect_file IS_riv_bas is known directly from the size of basin, it is also the number of lines in riv_bas_id_file Within PETSc, the way to do "ZV_Vlat(IV_riv_bas_loc)=ZV_read_riv_tot(IV_riv_index)" is: VecSetValues(ZV_Vlat,IS_riv_bas,IV_riv_bas_loc,ZV_read_riv_tot(IV_riv_index),ierr) # **Reading observations** Read → ZV_read_obs_tot IS_obs_tot the total number of gages in domain, it is also the size of obs_tot_id_file. IS_obs_bas is determined on the fly based on obs_use_id_file and riv_bas_id_file, therefore of IV_obs_index and IV_gage_loc have to be allocated within code. Within PETSc, the way to do "ZV_Qobs(IV_riv_bas_loc)=ZV_read_obs_tot(IV_obs_index)" is: VecSetValues(ZV_Qobs,IS_obs_bas,IV_gage_loc,ZV_read_obs_tot(IV_obs_index),ierr): # **Reading of forced inflow** Read → ZV_read_for_tot IS_for_tot is the total number of available forcing locations, it is also the size of for_tot_id_file IS_for_bas is determined on the fly based on for_use_id_file, riv_bas_id_file, and rapid_connect_file. Therefore of IV_for_index and IV_for_loc would have to be allocated within code. The trick here is that forcing is not applied at the reach where data is measured, it's the reach downstream of measured data. VecSetValues(ZV_Qfor,IS_for_bas,IV_for_loc,ZV_read_for_tot(IV_for_index),ierr): ZV_Qfor(IV_for_loc)=ZV_read_for_tot(IV_for_index) # **Further information** RAPID website: http://rapid-hub.org/ RAPID source code: https://github.com/c-h-david/rapid/