

Modeling the Mississippi River Basin with RAPID

Cédric H. David
James S. Famiglietti
Zong-Liang Yang
Victor Eijkhout

Continental scale hydro model inter-comparison for SWOT

31 Aug 2016

Outline

- RAPID
- Some data processing
- Simulations
- Discussion

RAPID is based on the Muskingum method

k is a time $(k \ge 0)$ related to the celerity of the flow wave

x is a non-dimensional parameter ($0 \le x \le 0.5$) related to diffusion of the flow wave

Relationship between rivers and their catchments in RAPID

1 river reach 1 catchment

From David et al. 2011 (JHM)

River network connectivity in RAPID

Compute the inflow to rivers from runoff

- Superimpose with map of catchments
- Using runoff value at catchment centroid and catchment area

David, Hong and Yang (2013, EMS)

RAPID website and documentation

RAPID (Routing Application for Parallel computation of Discharge)

Animations, tutorials, publications: All on the RAPID website:

http://rapid-hub.org

Fostering community development

- Computation of water elevation
- Two new flow wave propagation schemes

Microsoft®

Research

Cloud computing

Fork RAPID on GitHub
Star RAPID on GitHub

Follow me on GitHub

• Optimization of ParisTech

Online coupling with groundwater model

 National Flood Interoperability experiment

forecasting

app

water allocations • Online coup

RAPID is now on GitHub!!!

Outline

- RAPID
- Some data processing
- Simulations
- Discussion

HydroSHEDS

Lehner et al. (2008)

HydroSHEDS for North America

Also DEM, conditioned DEM, and Flow accumulation

Computing the length of each river reach

Legend
United States
Great Lakes
Mississippi River Basin
Mississippi River Network

0 250 500 1,000 Kilometers

Geographic Coordinate System

Projected Coordinate System

HydroSHEDS river IDs

HydroSHEDS cumulative catchment size

Compute the non-cumulative catchment area

Cumulative

Non-cumulative

Some statistics about the computing domain

102,229 river reaches and catchments

River reaches vary in size from 0.29 to 101.50 km (mean: 6.20 km, median: 4.79 km, standard deviation 5.29 km).

Contributing catchments vary in size from 0.14 to 542.78 km² (mean: 31.11 km², median: 24.79 km², standard deviation 25.66 km²).

Compute the inflow to rivers from NLDAS2

David, Hong and Yang (2013, EMS)

- Download
 NLDAS2 .grb files
- Convert .grb to .nc files and extract runoff fields
- 3-hourly average
- 6-hour shift (UTC-CST)
- Superimpose with map of catchments

Advantages of using HydroSHEDS for SWOT

WATER RESOURCES RESEARCH, VOL. 49, 1-5, doi:10.1002/wrcr.20440, 2013

A simple global river bankfull width and depth database

Konstantinos M. Andreadis, 1 Guy J.-P. Schumann, 1 and Tamlin Pavelsky2

Received 25 October 2012; revised 15 July 2013; accepted 19 July 2013.

Figure 2. Map of river widths globally, with a threshold of 50 m (not shown) and 1000 m (reaches with larger widths reset with this value) applied for display purposes.

Derived from SRTM measurements

Vector-based (blue lines and not grid cells) → SWOT will see actual water bodies (10-100 m swath resolution), not 1° grid cells

Some existing preliminary interest from the SWOT community

Selecting gauging stations

Missouri River at Bismarck, North Dakota				
Missouri River at Omaha, Nebraska				
Missouri River at Hermann, Missouri				
Mississippi River at Saint Paul, Minnesota				
Mississippi River at Keokuk, Iowa				
Mississippi River at Grafton, Illinois				
Mississippi River at Saint Louis, Missouri				
Mississippi River at Thebes, Illinois				
Ohio River at Sewickley, Pennsylvania				
Ohio River at Louisville, Kentucky				
Ohio River at Metropolis, Ohio				
Arkansas River near Haskell, Oklahoma				
Arkansas River at Murray Dam near Little Rock, Arkansas				
Red River at Spring Bank, Arkansas				

2000 is the driest and 2008 is the wettest (Upper Mississippi Floods of 2008)

year	average flow					
2000	1893.3					
2001	2629.5					
2002	2516.3					
2003	2345.8					
2004	2847.8					
2005	2229.2					
2006	1908.5					
2007	2585.4					
2008	3464.0					
2009	3152.1					

Selection based on 6 published studies

Close to gauge: Missouri River at Garrison Dam, North Dakota (use	Wood et al. [1997]
	Wood et al. [1997]
Upstream of confluence with Mississippi River	Wood et al. [1999], Maurer et al. [2001], Lohmann et al. [2004]
Close to large metropolitan area, centennial gauge	
	Maurer et al. [2001], Lohmann et al. [2004]
Downstream of confluence with Illinois River	
Centennial gauge, downstream of confluence with Missouri River	
Upstream of confluence with Ohio River	David et al. [2013a]
Close to large metropolitan area (Pittsburg)	
Close to large metropolitan area	
Downstream of confluence with Tennesse River, upstream of confluence	Maurer et al. [2001], Lohmann et al. [2004]
	Abdulla et al. [1996]
Close to gauge: Arkansas River at Little Rock, Arkansas (used in pu	Abdulla et al. [1996], Lohmann et al. [1998]
Close to gauge: Red River at Shreveport, Louisiana (used in publishe	Abdulla et al. [1996], Lohmann et al. [1998]

Ready to run!

Outline

- RAPID
- Some data processing
- Simulations
- Discussion

Aftermaths: flow statistics

			Initial opt	imization (slower	Further optimization (faster		
			celerity)			celerity)		
		Average	Average			Average		
		Flow	Flow			Flow		
Name	rivID	(observat	(model)	RMSE	E	(model)	RMSE	E
Missouri River at Bismarck, North Dakota	231083	466.9	907.3	843.4	-55.32	908.5	885.8	-61.14
Mississippi River at Saint Paul, Minnesota	266984	401.5	477.0	380.0	0.24	477.1	520.3	-0.42
Missouri River at Omaha, Nebraska	328965	755.6	1919.2	1809.9	-50.45	1921.8	2000.6	-61.87
Ohio River at Sewickley, Pennsylvania	339344	989.5	1002.6	573.9	0.53	1003.3	457.1	0.70
Mississippi River at Keokuk, Iowa	341237	2188.4	2974.8	1299.4	0.26	2977.9	1539.4	-0.04
Mississippi River at Grafton, Illinois	363260	3417.3	4439.1	1678.7	0.46	4445.6	1962.6	0.27
Missouri River at Hermann, Missouri	367121	2083.1	4969.0	4048.3	-7.23	4976.8	4276.9	-8.19
Mississippi River at Saint Louis, Missouri	368199	5546.1	9504.1	5381.2	-1.37	9520.4	5617.9	-1.58
Ohio River at Louisville, Kentucky	373295	3622.7	4357.8	2695.2	0.28	4369.3	2170.3	0.54
Ohio River at Metropolis, Ohio	389189	8127.9	10375.1	4580.0	0.42	10413.0	3577.2	0.64
Mississippi River at Thebes, Illinois	389491	6078.5	10237.9	5669.8	-1.20	10257.4	5788.0	-1.30
Arkansas River near Haskell, Oklahoma	407204	303.4	1019.5	997.3	-6.49	1020.3	1030.7	-7.00
Arkansas River at Murray Dam near Little Rock, Arkansas	420653	1294.1	2986.1	2355.2	-1.77	2990.0	2442.9	-1.98
Red River at Spring Bank, Arkansas	440065	588.4	1418.0	1195.6	-1.73	1420.0	1310.5	-2.28

Missouri River: poor simulations (modeling system produces twice the observed flow)

Upper Mississippi River: good simulations (better stats when slow wave)

After confluence of Upper Mississippi and Missouri: poor simulations

Ohio River: good simulations (better stats when fast wave)

Arkansas and Red River: poor simulations (modeling system produces twice the observed flow)

Animation

SWOT data look alike

https://github.com/c-h-david/rrr https://github.com/c-h-david/rrr

Thickness of blue lines is function of simulated *discharge*10-year simulation using RAPID (2000-2009), 15-min time step, output every 3-hr Sub-sampling based on orbit at 890 km altitude, 77.6° inclination, 20.86 days repeat *No observational error* accounted for here

Outline

- RAPID
- Some data processing
- Simulations
- Discussion

Aftermaths: hydrographs

RAPID lacks reservoir module

Not bad!

Not bad!

8 of the 15 largest U.S. lakes/reservoirs are in domain

Thank you! Questions?

