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2. Method of Data Assimilation
SWOT River Model CaMa-Flood

Not launched until 2021
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(virtual observation data made 
from river model)

Virtual Experimentand did
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2. Method of Data Assimilation
Virtual Experiment
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2. Method of Data Assimilation
Virtual Experiment

Data Assimilation
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This is possible because CaMa-Flood 
calculates water dynamics based on WSE

Many Variables



3. Results and Discussions (A) -25% Experiment

absolute Error Rate of River Discharge
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the Amazon River



3. Results and Discussions (B) Blind Runoff
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4. Future Steps

Enlarging Local Patch

Using information 
of near-by pixel 

Originally, only target pixel is 
calculated at Assimilation 

Assimilation Correction will be 
possible when there is observation at 

somewhere in the local patch

Assimilation is possible only when there is Observation at that location



4. Future Steps

Improving Ensemble Spread
• Usually, ensemble is bundled in daily step

Ensemble

Bundle

• This is often used in Atmospheric Model, 
which Ensemble easily spread

• However Ensemble and Bundle at daily step is 
too short for River Model to spread Ensemble

DownstreamUpstream

Observation at 
Downstream is not 
much effective
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• Usually, ensemble is bundled in daily step
Ensemble

Bundle

• This is often used in Atmospheric Model, 
which Ensemble easily spread

• However Ensemble and Bundle at daily step is 
too short for River Model to spread Ensemble

Ensemble

Bundle

• Only bundle when there is Observation & 
Assimilation (once in few days)

• This will allow the Ensemble to Spread

• This will make assimilation at downstream 
more effective

Improving Ensemble Spread


