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RVIC	- Lohmann	Routing
• Routing	is	performed	separately	

from	the	land	surface	simulation,	
using	a	separate	routing	model	
(Lohmann,	et	al.	(1996;	1998))

• Each	grid	cell	is	represented	by	a	
node	in	the	channel	network

• Total	runoff	and	baseflow	from	
each	grid	cell	is	first	convolved	
with	a	unit	hydrograph	
representing	the	distribution	of	
travel	times	to	the	channel	
network

• The	grid	cell's	input	into	the	
channel	network	is	then	routed	
through	the	channel	using	
linearized	St.	Venant's equations
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http://rvic.readthedocs.io/en/latest/about/model-overview/



Routing	Model

• Routed	according	to	the	following	:

– In-grid	flow	concentration	is	given	by
basic	unit	hydrograph

– In-channel	flow	is	given	by	the	
Saint	Venant’s equation:

– Solved	using	convolution	

Of	Green’s	(impulse	response)	
function,	given	by:
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Model	Setup
• Simulations	for	the	Mississippi	with	NLDAS	Runoff

– Date:	01/01/2000	to	12/31/2009,	6	months	spinup before	start

• 0.125	degree	resolution	
• Hourly	time	step	and	averaged	to	daily	(also	run	with	just	

daily)

• Topography:	SWOT-MIP	setup	(Direc.	derived	from	Dai’s	DEM)
– Temporarily	using	a	different	network	(Legacy	code	thinks	there	is	

something	wrong	with	the	new	DEM)
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Model	Setup

• Flow	Network:
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Lohmann,	1998



Results
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Daily	Discharge	Output



Results	– Overall	TS
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Results
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Results	- Stats

Mean	Q	(Obs) Mean	Q	(Model) RMSE
466.9 995.4 972.3
401.5 282.5 355.7
755.5 695.5 760.5
989.6 1180.1 633.0
2188.6 2991.0 1365.3
3418.1 3639.1 1534.8
2083.2 15.9 2497.3
5547.1 8839.3 4985.0
3623.3 4317.3 2641.6
8129.7 7239.1 4111.0
6080.4 10255.5 7225.0
303.3 287.9 354.7
1294.1 39.1 1868.8
588.6 592.4 473.8
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Summary
• Acceptable	results	from	a	simple	model	
– Good	stats	on	the	monthly	level	(for	LSMs)

• Often	misses	timing	of	certain	events	and	human	influences

• Can	serve	as	a	baseline	for	other	model	results

• Still	need	to	fix	the	flow	direction	issue	to	make	sure	
everything	is	consistent
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SWOT	Assimilation	Experiments
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• How	can	we	use	future	SWOT	data	to	better	predict	spatially	
and	temporally	consistent	records	of	runoff	and	discharge?
– Statistical	interpolation	techniques	(Paiva	et	al.,	2015)
– Data	assimilation	with	hydrodynamic	model	(Pan	and	Wood,	2013,	

Inverse	Streamflow	Routing)



Inverse	Streamflow	Routing
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The	integrated	routing	process	can	then	be	given	a	
linear	form:
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Forward	model	(Linear	Routing): =y Hx

yt =H0x t +H1x t−1 ++Hkx t−k +εt

ˆ ˆ ˆ ˆ" ' ( ' ' ' ' ' )t t t t t t k-= + - -x x K y H x L x
Inversion	is	done	through	a	Kalman	Filter	&	Smoother:

The	weight	of	the	correction	(Kalman	Gain)	is	determined	as:

( ) 1' ' 'T T
t t t t

-
= +K PH H PH R

Inverted	Runoff

Smoothing	window	of	2x	max	flow	length	(days)	was	used	for	this	study

Where	H	=	Green’s	Impulse	Response	Function	(Lohmann,	1996)



Inverse	Streamflow	Routing
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Idealized	Experiment
Experiments	with	theoretical	SWOT	
observations	to	construct	basin	wide	
discharge:

• Utilizes	a	Kalman	Filter	&	Smoother
• Linear	routing	model	(Lohmann)
• ~150	crossing	”gauges”	assimilated
• 25	crossing	“gauges”	evaluated



Discharge	Interpolation	Experiments
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ISR	– SWOT	Assimilation
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• Application	of	Inverse	Streamflow	Routing	to	Ohio	river	basin	illustrated	
ability	to	assimilate	SWOT	obs.

• Performance	constrained	by	spatial	and	temporal	coverage:

From	Fisher	et	al.	(In	Prep.)



ISR	– SWOT	Assimilation
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• Application	of	Inverse	Streamflow	Routing	to	Ohio	river	basin	illustrated	
ability	to	assimilate	SWOT	obs.

• Performance	constrained	by	spatial	and	temporal	coverage:

From	Fisher	et	al.	(In	Prep.)

• How	will	SWOT	observe	other	river	basins?

• How	will	their	location	and	spatial	
properties	affect	the	assimilation?



Global	Basins
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• Inverse	Streamflow	was	applied	to	32	large	global	basins	
• Representative	of	a	wide	range	of	hydrologic	and	geographic	properties



Synthetic	Experiments
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• Model	Setup:	
• Initial	conditions	à VIC	LSM	forced	with	runoff	climatology
• Discharge	observations	à VIC	LSM	forced	with	Princeton	Global	Forcing
• Theoretical	SWOT	observations	àModel	discharge	sampled	from	

theoretical	21-day,	890	km	altitude,	77.6° inclination	orbit
• 0.25° spatial	res.	&	daily	temporal	res.
• ~30%	errors	for	observations	based	on	current	retrieval	methods



Discharge	Interpolation
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Assimilation	using	runoff	climatology	+	SWOT	
sampled	discharge	time	series	for	the	
Danube



Global	Interpolation	Performance
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Nash-Sutcliffe	Efficiencies	(NSE)	for	reconstructed	gauge	discharge	time	series



Global	Interpolation	Performance
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Nash-Sutcliffe	Efficiencies	(NSE)	for	reconstructed	gauge	discharge	time	series

What	causes	the	assimilation	
performance	to	differ	across	basins?



Global	Applicability
SWOT	orbit	dictates	the	availability	
of	data	for	assimilation
• Depends	on	River:	

– Latitude
– Size	(length,	width	and	basin	area)
– Orientation
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Biancamaria	et	al.,	2015

Day	1	and	2	Crossings	for	the:
Danube	&	Nile



Adding	in	Discharge	Obs.
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Conclusions
• For	most	basins	we	are	able	to	use	

ISR	reconstruct	spatially	and	
temporally	consistent	discharge	
– Also	reconstruct	runoff	fields

• Utilization	of	SWOT	observations	
will	be	dependent	on:
– Timing	and	orientation	of	overpasses
– Basin	geometry	and	orientation
– Availability	of	in-situ	discharge	or	

runoff	information	to	aid	in	the	
assimilation

• Future	work	is	also	needed	to:
– Better	quantify	orientation	of	rivers	

relative	to	orbit	
– Differentiate	observations	of	rivers	

and	floodplain	areas
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Nile	River



Thank	you,	
Questions?
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